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Abstract -- An open, free convection loop embedded near the surface of a heat-conducting solid is examined 
numericaily. The loop is in the form ofa ham-torous with duct diameter d and toroidal major radius D/2. The 
solid is heated unjformly from below. Critical Rayleigh numbers (Ra,) for the onset of motion are determined. 
Velocities, exit temperatures, and convective heat transfer rates are determined for d/D values of IO-‘, 10e3 
and 10-’ and for Rayleigh number ratios (Ra/Ra,) from 1 to 360. The Prandtl number is 2.8 and the 
tluid/solid thermal conductivity ratio is k,/k, = 0.133. Results are compared with an analytical solution [7] 

for a high-conductivity solid, i.e. k,/k, -J 0. 

NOMENCLATURE 

constant of order unity; 
specific heat of fluid ; 
duct diameter ; 
toroidal major diameter ; 
friction factor; 
acceleration of gravity; 
heat-transfer coefficient ; 
thermal conductivity of fluid; 
thermal conductivity of solid surrounding 
the loop; 
mean fluid velocity; 
Nusselt number defined in equation (9); 
Prandtl number offluid defined in equation 

(9); 
convective heat flow from loop defined by 
equation (16) ; 
conductive heat flow at depth across area 
D’, defined by equation (17); 
heat flow per unit length of loop; 
heat flow per unit length of image loop; 
distance from centerline of loop to any 
point P in the solid, axial coordinate along 
loop, and vertical depth, all defined in Fig. 

1; 
dimensionless distance from centerline of 
loop to any point in the solid, dimension- 
less axial coordinate, and dimensionless 
vertical depth; 
Reynolds number defined in equation (9); 
Rayleigh number defined in equation (9); 
critical Rayleigh number for the onset of 
convective flow; 
critical Rayleigh number for a loop sur- 
rounded by a high-conductivity solid, de- 
fined in equation (15); 
fluid bulk temperature; 
inlet and exit fluid bulk tem~ratures; 
constant surface temperatore shown in Fig. 
1; 

T, mean wall temperature; 
@~/&),, ambient temperature gradient far from 

the loop. 

Greek symbols 

% thermal diffns~vity of fluid; 

Bfy thermal expansion coefficient of fluid; 

A?; reference temperature difference, (aT(dz), 

D/2 ; 
dimensionless temperature, (T- T,)/AT; 

Q,, fIai, f&, dimensionless bulk, inlet bulk, and exit bulk 
temperatures; 

@ wt dimensionless mean wall tem~rature; 

P,- density of fluid ; 
43 angular coordinate shown in Fig. 1; 

v/t kinematic viscosity of fluid. 

INTRODUCTION 

THIS PAPER examines an open, free convection loop 
embedded near the surface of a heat-conducting solid. 
The loop is in the form of a half-torous as shown in Fig. 
1. Although idealized, the geometry is representative of 
fluid-filled pores at an interface between a heated 
permeable medium and a cooling fluid. The geometry 
is also representative of aquifers embedded in geologi- 
cal formations. Under appropriate conditions, heat 
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FOG. 1. Illustration of open-loop geometry. 
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conduction through the surrounding solid will estab- 
lish a natural circulation through the loop, This Row 
will, in turn, augment the transfer of heat from the 
interior of the solid to its surface. Clearly, the process 
of heat conduction in the solid interacts with, and is 
altered by, the natural convection flow through the 
open loop. This combined conductionconvection 
problem forms the subject of the present paper. 

Natural circulation loops, also known as loop 
thermosyphons, have been widely studied in the 
engineering literature. Indeed, thernlosyphoI~s have 
been the subject of a review by Japikse [I]. Most prior 
studies have examined closed loops where the wall 
temperature or wall heat flux was a known function of 
position. This includes experimental and theoretical 
studies of toroidal [2, 31 and straight-segment [4. 5} 
loops. Relatively few studies have been made of open 
loop systems, however. An open loop is one which 
connects points of inflow and outflow, each of which is 
maintained at a known pressure. Open-loop thermo- 
syphons have been examined in the engineering 1[6] and 
geophysical [7] literature. Indeed, in the latter area, 
approximate models have been constructed to sim- 
ulate the conductive resistance of surrounding rock 
formations. However, the heating of the thermo- 
syphon was either prescribed [s] or attributed to 
transient conduction from the surroundings [9]. It 
appears that problems involving combined 
conduction--convection at steady state between a free 
convection loop and its surroundings have not been 
considered. 

This work considers the free convection loop sket- 
ched in Fig. 1. The loop is a circular duct (of diameter 
d) whose centerline describes a semi-circle (of radius 
D/2). The resulting half-torous is embedded in an 
otherwise-impermeable solid of uniform thermal con- 
ductivity k,. The loop is filled with fluid of thermal 
conductivity k,. Inflow and outflow to the loop occur 
on a horizontal, isothermal boundary of the solid. The 
solid is heated uniformly at depth where a uniform 
temperature gradient (S/dz), exists. Any free con- 
vection through the loop alters this gradient in the 
immediate vicinity of the loop. The natural circulation 
is, of course, driven by density differences between the 
descending and ascending legs of the loop. 

An analytical model for steady state, combined 
conduction--convection in the loop is proposed in the 
following section. The model employs integrated. one- 
dimensional balances of heat and I~lomenturn within 
the loop, and uses distributed sources and sinks of heat 
to solve the external conduction equation. A Prandtl 
number characteristic of water and a k,/k, ratio typical 
of water and an intermediate-conductivity solid are 
assumed, Numerical solutions are obtained which 
include a determination of the critical Rayleigh num- 
ber, Ra,, for the onset of convective flow. The flow rate 
through the loop, expressed by the product RePrdjD, 
is found for a range of Rayleigh numbers and for 
several values of d/D. Laminar, transitional. and 
turbulent flows are considered. Exit temperatures and 

rates of convective heat transfer are also determmed 
Results are compared with an analysis applicable to a 
high-conductivity solid. 

t’oHM1~I.A 11Oh 

C‘onsider the loop illustrated in Fig. 1. Following 
prior work [7J, area- averaged momentum and energy 
balances may be written for steady tlow conditions ~1s 

where u is the mean velocity (a constant), ‘G(s) and 
T’,(s) are respectively the fluid bulk temperature and 
the mean wall temperature at any axial station, and .f 
and h, are the friction factor and heat-transfer coef- 
ficient for pipe flow. Other parameters are defined in 
the Nomenclature list. 

In equation (1). the left and right sides respectively 
represent the net buoyant head and the friction head. 
In general. an elevation difference k between inlet and 
outlet could be included by adding a term P,.gh to the 
left side, but such topographic effects will not be 
considered in the present study. The coefficient c is the 
ratio of the area-mean fluid temperature (which char- 
acterizes the buoyant force) to the bulk or mixed-mean 
fluid temperature (which describes convective energy 
flow). The coefficient depends on the cross-sectional 
profiles of velocity and temperature in the duct. The 
value of c ranges from slightly less than unity (turbu- 
lent flow) to approximately S/l 1 (iaminar flow). Due to 
the approxjmate nature of the present analysis a value 
of t‘ = 1 is justified for most applications. 

In the energy equation (2) note that axial con- 
duction. viscous dissipation, and a term involving the 
adiabatic temperature gradient have been neglected. 
The latter two effects are proportional to a parameter 
known as the dissipation number [lo], Di = fi&l’ 
2c,,. The two effects have been included for laminar 
flows in the present geometry [ 11.1 and were found 
to be of the same order and generally small for most 
applications. In general, viscous dissipation and the 
adiabatic temperature gradient may be neglected in 
natural convection problems when the dissipation 
number is small compared to unity. 

The temperature in the solid surron~~ding the free 
convection loop is governed by Laplace’s equation. An 
appropriate solution for the temperature at any point 
P can be obtained by the superposition of point 
sources and point sinks of heat along the centerline of 
the loop 1121. To satisfy the surface boundary con- 
dition it is necessary to introduce a mirror-image 
loop, embedded in a heat-conducting solid, above 3 
zz 0. The axial coordinate s is extended to the image 
loop (over the range nD/2 I s <c aD). The heat flow to 
the surrounding solid from the true or image loops, per 
unit length along the loops, is denoted by Q’ or Qt 
frespectively. Any heat released by the true loop must 
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be absorbed by the image loop. The isothermal 
boundary condition at z = 0 is satisfied by requiring 
that Qi(nD - s) = -Q’(s) over the range 0 < s < 7tD/2 
(discontinuities may exist at s = 0 and r&/2). The 
temperature at any point P in the surrounding solid is 
thus given by 

T(x, Y,Z) = s lrDiz Q’(s)ds 
~ 

0 4zk,r 

+ s 
where To is the surface temperature (at z = 0), 
(aT/az), denotes the uniform heat flux into the solid 
from below, and the integrals of heat loss from the 
actual and image loops appear on the right side. 

The mean wall temperature z(s) is found by 
averaging the temperature given by (3) around the 
circumference of the duct at any axial station. The 
source-sink distribution is then eliminated from the 
averaged equation by using the identity 

Q’(s) = nh,d(T, - T,). (4) 

The result is 

T,(s) = g s nD 

s 0 
(Tb-T,)?+To+ g z(5) 

( > cc 

where temperatures in the image loop are suitably 
interpreted. Equation (5) is a weakly-singular, non- 
homogeneous Fredholm integral equation of the 
second kind. 

The governing equation may be cast in parametric 
form by introducing dimensionless variables. Approp- 
riate reference quantities are, for a length scale, the 
depth (or radius) of the loop, D/2, and, for a tempera- 
ture scale, the temperature difference between the 
bottom of the loop and the surface of the solid, AT 
= (dT/h), D/2. The governing equations (l), (2) and 
(5) thus become 

Tr 

- s Re2Pr d 

0 

tJb cos+dS = nf Ra D (6) 

de* 

dS= -2RePr d ’ 
*qe -&,) (7) 

(&-~)~+z (8) 

where S, R and 2 are dimensionless lengths and 0 
= (T- T,)/AT. The parameters which appear are 
identified as Reynolds, Prandtl, Rayleigh and Nusselt 
numbers 

Ra = dfc(a Tlwx d4 
v/a/ ’ 

Nu=Y (9) 
b 

To complete the problem formulation, forced con- 
vection correlations for the friction factor and Nusselt 

number are assumed. These are [12, 131: 

f = 64/Re, Nu = 48/11 

for laminar flow (Re < 2300) and 

(10) 

f = 0.316 Re-‘.*‘, Nu = 0.023Re0.8Pr’13 (11) 

for turbulent flow (Re > 3300). Linear interpolation is 
used for the transitional regime (2300 < Re 5 3300). 
The Nusselt number given in (10) applies for constant- 
flux wall heating; the Nusselt number given in (11) 
applies for both constant-flux and constant-wall- 
temperature heating conditions. The foregoing cor- 
relations should provide reasonable estimates when- 
ever secondary flows due to curvature or mixed con- 
vection are small [12, 141. Thus, although the mean 
flow is driven by density differences between ascending 
and descending legs of the loop, secondary flows (and 
density differences) at any axial station are neglected. 

The usual unknowns in the present problem are the 
mean velocity, ti, and the bulk and wall temperature 
distributions in the loop. In dimensionless form, these 
unknowns appear in the Reynolds number, Re, and the 
temperature distributions 6,(S) and e,(S). These un- 
knowns are governed by equations (6) to (8), withf and 
Nu given by (10) and (11). The governing equations 
form a set of nonlinear (in Re), coupled, differential and 
integral equations. In general, solutions must be 
obtained numerically. One boundary condition ap- 
pears in the governing equations: the inlet fluid 
temperature ebi. We will assume that fluid enters at the 
surface temperature so that ebi = 0. The independent 
parameters of the problem thus become Pr, Ra, d/D, 
and k,Jk, 

NUMERICAL SOLUTIONS 

A principal goal of the study is to find the flow rate, 
the outflow temperature, and the convective heat 
transport from a syphon when all other parameters are 
given. Since the governing equations are nonlinear in 
Re, they are not readily solved for this variable. 
Instead, solutions were found by assuming a value for 
Re and then finding the value of Ra required to balance 
the flow. 

A solution proceeds by assuming Re and solving (7) 

and (8) for the temperature distributions, eb and tl,, 
along the loop. Finite differences were used. A back- 
ward difference was employed (for stability reasons) 
for the spatial derivative in (7). The mean wall 
temperature, e,(s), was found by averaging, at each 
axial station, the temperature given by (3) at four 
equally-spaced points around the circumference of the 
duct. Trapezoidal-rule integration was then used for 
(8). Although a direct algebraic solution for eb and B,,, 
at discrete points is possible in principle, the number of 
unknowns is generally too large to handle with 
accuracy. Instead, in practice a two-step iteration was 
found to be effective. First, 8, was found from (7) using 
an estimate of &,. Second, the @,, estimate was 
improved by solving (8) using the new 0,-values. The 
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two-step process was repeated until convergence was 
achieved (typically within 10 iterations). In the second 

step, for small values of the coefficient of the integral in 
(8), successive substitution was successful for solving 

(8). For large values of the coefficient, a direct algebraic 
solution was required. In addition, for small values of 
d/D, a local analytical integration of (8) was used to 
accurately handle the logarithmic singularity. Spatial 

step sizes of AS = 0.01 n and 0.025 n were used for the 

successive substitution and direct procedures, 
respectively. 

After the temperature distributions were obtained, 

the integral in (6) was evaluated using trapezoidal-rule 
integration. The Ra-value required to balance the flow 
was obtained from (6). Solutions were obtained in 

this way for a range of Re. Additional details are 

available in reference [l 11. 

RESULTS 

Numerical solutions have been carried out to obtain 

flow rates and heat transfer characteristics for the free 
convection loop, or thermosyphon, shown in Fig. 1. 
Results are presented for a wide range of Rayleigh 
numbers and d/D ratios. A Prandtl number of Pr = 2.8 

is assumed (water at 65°C). This choice of Pr does not 

influence the laminar flow solutions, however. A 
thermal conductivity ratio for the fluid and surround- 

ing solid of k,/k, = 0.133 is assumed. For water as the 
fluid, this corresponds to a thermal conductivity for 

the solid which is intermediate between metals and 

nonmetals. 
In what follows, it will be convenient to compare the 

numerical solutions with an analytical solution from 
reference [7]. The analytical solution assumes that the 
solid surrounding the loop has a very high thermal 
conductivity so that the ratio k,/k, + 0. In this limit, 

the integral in (8) may be neglected and the wall 
temperature along the loop becomes a known function 
of depth (or position), i.e. @w = Z. The energy and 

momentum equations, (7) and (6), may be integrated to 
respectively obtain the bulk temperature distribution 

along the loop 

e-rs+++sinS-cosS (12) 

and an equality between buoyant and friction heads, 

42 
1 + NZ 

where 

1 RePr d 

N=2Nu-D. 
(14) 

The analytical solution also reveals the existence of a 
critical Rayleigh number for the onset of convection 
through a free convection loop. The critical Rayleigh 
number may be found from (13) by letting N + 0. 
Denoting the critical Ra from the analytical solution 
by Ra:, the result is Ra: = 4fReNu. Since laminar 

flows are expected at the onset of motion,,fand NU may 
be evaluated with (10) to obtain 

Ra,* = 12288!11 = Ill?.!. 1!5i 

The critical Rayleigh number for the onset of 
convection in the loop is completely analogous to a 
critical Rayleigh number for the onset of motion in ;L 
fluid layer heated from below [ 123. For both the loop 
and the layer, thermal and viscous damping suppres\ 

fluid motion when Ru is less than the critical value. 
When Ru is greater than the critical. buoyancy I‘orccs 

accelerate the flow until a balance exists between 
buoyancy and frictional forces. For the free convection 

loop, the thermal and viscous damping are respectively 
provided by wall heat transfer and by wall friction. The 
wall heat transfer rate is. in turn, influenced by the 
thermal conductivity ofthe solid surrounding the loop. 

Numerically-determined critical Rayleigh numbers. 
Ru,., are given in Fig. 2 for several d ‘D ratios and for the 
assumed thermal conductivity ratio of k,rik, = 0.133. 
The ordinate is scaled by the critical Rayleigh number 
for a loop embedded in a high-conductivity solid, &I: 
(equation (15)). Clearly, the critical Rayleigh numbers 
for the case k,;k, = 0.133 arc less than Ra:. This IS 
readily understood if one examines the onhct !)l 

convection in terms of a departure from a quiescent 

rest state. When the surrounding solid has a lo\\ 
thermal conductivity, any slight motion of fluid 
through the loop can alter the wall temperature along 

the loop. Thus, the local wall temperature is increased 
by ascending hot fluid, and is decreased by descending 
cold fluid. Such changes alter the buoyancy forces in 21 
direction which helps to sustain fluid motion. The 
resulting critical Rayleigh number is therefore less 
than for a loop embedded in a high conductivity solid, 

For that case the flow of fluid does not alter the wall 
temperature to create a horizontal temperature differ- 

ence to help sustain the flow. 
Performance characteristics of the free convection 

loop are illustrated in Figs. 3, 1 and 5. These figures 
respectively display the flow rate. expressed a\ 

Rr Pr &/I, the outlet temperature. (lb,,, and the rutc of 
heat convection out of the loop. The abscissa in ail 
cases is the ratio Ru.!Ru,. The dotted lines in Figs. 3 and 
4 represent the analytical solution expressed b) ( 1 ;I 
and (12), respectively, and were evaluated assuming 
laminar How. The analytical solution corresponds t<l a 
loop embedded in a high-conductivity solid. t i: 
h,:k, : 0. Solid and dashed lines correspond i(i 

numerically-obtained solutions for a conductivity ra- 
tio of k,;k, = 0.133. Results are shown for dilI = 10 ji 

Frc;. 2. Critical Rayleigh number vs. l/;D for k,;k, = 0 133 
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RdRo, 

FIG. 3. Variation of mean velocity, expressed by the group Re Pr d/D, with Rayleigh number. The dotted line 
is from equation (13). 

10e3 and 10m4. Solid lines correspond to laminar 
flows, and dashed lines to transitional and turbulent 
flows. 

Major features of the results will now be sum- 
marized. For laminar flows, with f and Nu given by 
(lo), the governing equations (6) to (8) reveal that the 
unknown Reynolds number appears only in the group 
Re Pr d/D. Figure 3 illustrates this group. From Fig. 3, 
it is apparent for a given value of Ru/Ru, that laminar 
flow rates are reduced by about 50 per cent when a 
finite-conductivity solid (with kJkS = 0.133) is con- 
sidered. Flow rates are further reduced by the tran- 
sition to turbulence due to increased friction losses. 

Outlet temperatures shown in Fig. 4 reveal a striking 
similarity of the laminar results for kJk, = 0 and 0.133. 
Maximum outlet temperatures of 0.528 and 0.472 are 
observed for the two cases, and occur at RalRa, values 
of 3.5 and 4.3 respectively. Although the maximum 
achievable outflow temperatures are similar, the actual 
flow rates corresponding to the peaks are half as great 
for the case k//k, = 0.133. The appearance of a peak 
outlet temperature at an intermediate value of Ra is 
discussed further in reference [7]. At low flow rates &, 
equilibrates to the wall temperature and the outflow 
temperature approaches the surface temperature, i.e. 
19,~ + 0. For very high flow rates the fluid in the loop 

0.6 I I I ItIt I I 111111~ I I 

0 I I t11tttI I I I111111 I I 

IO 100 4OG 
Ro/Ro, 

FIG. 4. Variation of outlet bulk temperature with Rayleigh number. The dotted line represents equation (12) 
evaluated at S = n. 
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FIN;. 5. Ratio of the convective heat flow (Q,) to the ambient heat flow (QX ) vs. Rayleigh number 

does not have time to be heated and in this limit 0, + 0. 
Thus, a maximum outflow temperature occurs at an 
intermediate flow rate. Note also in Fig. 4 that the 
transition to turbulence can decrease or increase the 
outlet temperature for the case k,/k, = 0.133 depend- 
ing upon whether Ra/Ra, is less than or greater than 
4.3. This is a direct consequence of the aforementioned 
change in the bulk temperature profiles with increas- 
ing flow rate. When Ra/Ra, < 4.3 (low flow rates), & 
near the exit is generally greater than 8,. When 
Ra/Ra, > 4.3 (high flow rates), the reverse is true just 
below the surface. Since the transition to turbulence 
tends to decrease the temperature difference 0, - e,, 
the result is the observed decrease or increase of O,, 
accompanying the transition to turbulence. 

An important aspect of the free convection loop is its 
ability to enhance the transfer of heat from the interior 
of the solid to its surface. This may be expressed by 
comparing the enthalpy difference between outlet and 
inlet of the loop 

Qc = (71d2!4)~jf~,fU(7& - L) (16) 

with the conductive heat flow at depth. Quite arbit- 
rarily, we select a reference area of size D* for the 
conductive heat flow 

Q, = D2k,(?T/?z), (17) 

The ratio of these two expressions is 

(18) 

and is displayed in Fig. 5. An ordinate value near unity 
implies that the convective heat transfer by a loop is 
comparable to the heat conduction through an area D2 
at depth. Clearly, the ratio Q,/Qn increases as d/D is 
increased. This implies, if d is held constant, that 
shallow free convection loops are relatively more 
effective for transporting heat to the surface than are 

deep loops. Results in Fig. 5 also indicate that lammar 
flows are somewhat more effective for transporting 
heat than are turbulent flows; this follows from our 
prior discussion of the effects of turbulent transition on 
Re Pr d/D and Bbe (Figs. 3 and 4). Thus, the rate of heat 
transfer would be increased if the transition to turbul- 
ence were delayed. From Fig. 5 we conclude that 
shallow free convection loops, employing laminar 
flow, provide the most effective means of enhancing the 
transfer of heat from the interior of the solid to its 
surface. 
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TRANSFERT THERMIQU~ ENTRE UNE BOUCLE A CONVE~ION NATURALLY 
ET UN SOLIDE ~ONDU~EUR DE LA CHALEUR 

R&urn&---Une boucle ouverte B convection naturelle pr&s de la surface d’un silide conducteur de chaleur est 
examinh n~~riquement, La boucle est en forme de demi-tore avec un tube de diam&re d et un rayon V/2 du 
examin& num~riquement. La boucle est en formetore. Le solide est chat& uniform~ment par le bas. On 
d&ermine les nombres de Rayleigh critiques (Ra,) pour l’apparition du mouvement. Des vitesses, des 
temp&atures de sortie et des flux de transfeit par convection soni dkterminb pour des valeurs de d/R &ales g 
lo-‘. 10m3 et 10m4et ~ourdesrauoorts (RalRa,) aui varient de 1 B 360. Le nombrede Prandtlest &zali 2.8et 
le ra&xt des ~ondu~ti~t~ ther*mique hu kuidk et du solide est k,/kS = 0,133. Les r&sultats sont~ornp~~ 

avec une solution analytique [7] pour un soiide d t&s haute ~oRductivit~, soit k,/k, + 0. 

W~RMETRANSPORT DURCH FREIE KONVEKTION IN EINER SCHLAUFE, 
DIE IN EINEN W~RM~LE~TENDEN FESTK~RPER EINGEB~~ET IST 

Z~mmenfa~~g-Eine nahe der OberflLhe eines w~rmeleitenden Festkiipers eingebettete offene 
Schlaufe wird bei freier Konvektion numerisch untersu~ht. Die Schlaufe hat die Form eines Ha&-Torus mit 
dem ~jtungsquerschnitt d und dem Torus-Hauptradius rtj2. Der Festkijrper wird gleichf&mig von unten 
beheizt. Die kritische Rayleigh-Zahl Ra, f%r das Einsetzen der Bewegung wird bestimmt. Geschwindigkeiten, 
Austrittstem~raturen und konvektive W~rme~berga~gswe~e werden fiir Werte d/I) von lo-‘, 10s3 und 
10T4 und Verhgltnisse der Rayleigh-Zahlen (Ra/Ra,) von 1 bis 360 bestimmt. Die Prandtl-Zahl ist 2.8 und 
das Verhiiltnis der W~~eleit~hlen von Fluid und Festkijrper ist ks/kS = 0.133. Die Ergebnisse werden 
verglichen mit einer analyti~hen Liisung [7] fiir einen hoch-w~rmeleitenden Festk&per, d. h. kf/k + 0. 
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TE~~O~EPEH~ CBO6O~HO~ KOHBEK~~E~ B KOHTYPE, B~POEHHOM 
B TEn~O~POBO~HOE TBEPAOE TEJIO 

A~~oT~~~ - IIposenewo ~ncReHuoe nccne~o~H~e oTrcpbiTof0 X0H~ypa y noeepxw0cTfi TenAonpoBoA- 

Hoi-0 TBepAOrO TeJia, npW 3TOM B XOHType IfMeeT Memo ceo6oAeaa K~H~K~~~. KOHTYP W3rOTOBneH 

B BWe IiOAyTOpa C AHaMeTpOM KaHaZa d H 6ORbmiM TO~~~anbH~M PanHyCOM D/2. Taepnoe ‘reno 

PaBHOMepHo HarPBaJWCb CHEiSy. OrIPefieIreHbl 3HaYeWKI Kf%iTHVeCKOfO YHCRa PeJieX (Ra,), COOTBeT- 

CTByKwEte BOSWHKHOBeHNM KOHBeKTHBWOrO TeeYemK. CiCOpOCTb, Temeparypa Ha BbIXOAe, a Taxme 

CXOpyTb KOHBeXTWBHoPo nepenoca Tenna onpexenrnwb npH 3ziarlemm d/D, &WJHbIX 10-2, 10-a 

fi IO- a r?Pfi 3HaYemraX OTHomeH~a Ra/Ra, B nHana3o~e of 1 AO 360. %CAO IlpawATns paBH5UIWb 

2.8. a 0TnOmeH~e Te~AO~~BOAH~T~ YHAKOCTB K Tennon~ao~HocTn Taepnoro fena coc~a~ano 
k,/k, = 0,133. IIposener40 CpaaHeHHe ~3y~bTaToa c aua~~~~~~K~ pemeiixeM ansi cnysaa abrC0~0- 

Teunon~oaO~Horo Taepnofo Tena, T. e. xorna k,/k, + 0. 


