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Abstract — An open, free convection loop embedded near the surface of a heat-conducting solid is examined

numerically. The loop is in the form of a half~torous with duct diameter 4 and toroidal major radius D/2. The

solid is heated uniformly from below. Critical Rayleigh numbers (Ra,) for the onset of motion are determined.

Velocities, exit temperatures, and convective heat transfer rates are determined for d/D values of 1072, 1073

and 10™* and for Rayleigh number ratios {Ra/Ra,) from 1 to 360. The Prandt! number is 2.8 and the

fluid/solid thermal conductivity ratio is k/k, = 0.133. Results are compared with an analytical solution [7]
for a high-conductivity solid, i.e. kg /k, - 0.

NOMENCLATURE

c, constant of order unity;

Cpops specific heat of fluid;

d, duct diameter;

D, toroidal major diameter;

£ friction factor;

¢, acceleration of gravity;

k., heat-transfer coefficient;

ky, thermal conductivity of fluid ;

k,, thermal conductivity of solid surrounding
the loop;

i, mean fluid velocity;

Nu, Nusselt number defined in equation (9);

Pr, Prandtl number of fluid defined in equation
9);

Q. convective heat flow from loop defined by
equation (16);

Q. conductive heat flow at depth across area
D?, defined by equation (17);

', heat flow per unit length of loop;

Qi heat flow per unit length of image loop;

r, s, z, distance from centerline of loop to any

point P in the solid, axial coordinate along
loop, and vertical depth, all defined in Fig.
4

R,S, Z, dimensionless distance from centerline of
loop to any point in the solid, dimension-
less axial coordinate, and dimensionless
vertical depth;

Re, Reynolds number defined in equation (9);

Ra, Rayleigh number defined in equation (9);

Ra,, critical Rayleigh number for the onset of
convective flow;

Ra},  critical Rayleigh number for a loop sur-
rounded by a high-conductivity solid, de-
fined in equation (15);

1 fluid bulk temperature;

Ty, Ty, inlet and exit fluid bulk temperatures;

To, constant surface temperature shown in Fig,
1

T, mean wall temperature;
(8T /0z),,, ambient temperature gradient far from
the loop.

Greek symbols

oy, thermal diffusivity of fluid;
B thermal expansion coefficient of fluid;
AT, reference temperature difference, (0T/0z),,

D/2;

dimensionless temperature, (T— T,)/AT;
8y, 0, 0,,., dimensionless bulk, inlet bulk, and exit bulk

temperatures;

2., dimensionless mean wall temperature;
o density of fluid ;

b, angular coordinate shown in Fig. 1;
Vs kinematic viscosity of fluid.

INTRODUCTION

THIS PAPER examines an open, free convection loop
embedded near the surface of a heat-conducting solid.
Theloopis in the form of a half-torous as shown in Fig,
L. Although idealized, the geometry is representative of
fluid-filled pores at an interface between a heated
permeable medium and a cooling fluid. The geometry
is also representative of aquifers embedded in geologi-
cal formations. Under appropriate conditions, heat
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Fic. 1. Hustration of open-loop geometry.
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conduction through the surrounding solid will estab-
lish a natural circulation through the loop. This flow
will, in turn, augment the transfer of heat from the
interior of the solid to its surface. Clearly, the process
of heat conduction in the solid interacts with, and is
altered by, the natural convection flow through the
opent loop. This combined conduction-—convection
problem forms the subject of the present paper.

Natural circulation loops, also known as loop
thermosyphons, have been widely studied in the
engineering literature. Indeed, thermosyphons have
been the subject of a review by Japikse [1]. Most prior
studies have examined closed loops where the wall
temperature or wall heat flux was a known function of
position. This includes experimental and theoretical
studies of toroidal [2, 3] and straight-segment [4, 5]
loops. Relatively few studies have been made of open
loop systems, however. An open loop is one which
connects points of inflow and outflow, each of which is
maintained at a known pressure. Open-loop thermo-
syphons have been examined in the engineering [6] and
geophysical [7] literature. Indeed, in the latter area,
approximate models have been constructed to sim-
ulate the conductive resistance of surrounding rock
formations. However, the heating of the thermo-
syphon was either prescribed [8] or attributed to
transient conduction from the surroundings [9]. It
appears that problems involving combined
conduction--convection at steady state between a free
convection loop and its surroundings have not been
constdered.

This work considers the free convection loop sket-
ched in Fig. 1. The loop is a circular duct (of diameter
d) whose centerline describes a semi-circle (of radius
D/2). The resulting hall-torous is embedded in an
otherwise-impermeable solid of uniform thermal con-
ductivity k,. The loop is filled with fluid of thermal
conductivity k.. Inflow and outflow to the loop occur
on a horizontal, isothermal boundary of the solid. The
solid is heated uniformly at depth where a uniform
temperature gradient (¢T/dz), exists. Any free con-
vection through the loop alters this gradient in the
immediate vicinity of the loop. The natural circulation
is, of course, driven by density differences between the
descending and ascending legs of the loop.

An analytical model for steady state, combined
conduction—convection in the loop is proposed in the
following section. The model employs integrated. one-
dimensional balances of heat and momentum within
the loop, and uses distributed sources and sinks of heat
to solve the external conduction equation. A Prandtl
number characteristic of water and a k /k, ratio typical
of water and an intermediate-conductivity solid are
assumed. Numerical solutions are obtained which
include a determination of the critical Rayleigh num-
ber, Ra,, for the onset of convective flow. The flow rate
through the loop, expressed by the product RePrd/D,
is found for a range of Rayleigh numbers and for
several values of d/D. Laminar, transitional, and
turbulent flows are considered. Exit temperatures and
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rates of convective heat transfer are also determined.
Results are compared with an analysis applicable to a
high-conductivity solid.

FORMULATION

Consider the loop illustrated in Fig. 1. Following
prior work [ 7], area- averaged momentum and energy
balances may be written for steady flow conditions as

frb 2

; ) A |
—p P ’ (T, = Ty cospds = - fp,u - (1)
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where u 1s the mean velocity (a constant), T(s) and
T.(s) are respectively the fluid bulk temperature and
the mean wall temperature at any axial station, and f
and h_ are the friction factor and heat-transfer coef-
ficient for pipe flow. Other parameters are defined in
the Nomenclature list.

In equation (1), the left and right sides respectively
represent the net buoyant head and the friction head.
In general, an elevation difference  between inlet and
outlet could be included by adding a term pgh to the
left side, but such topographic effects will not be
considered in the present study. The coefficient ¢ is the
ratio of the area-mean fluid temperature (which char-
acterizes the buoyant force) to the bulk or mixed-mean
fluid temperature (which describes convective energy
flow). The coefficient depends on the cross-sectional
profiles of velocity and temperature in the duct. The
value of ¢ ranges from slightly less than unity (turbu-
lent flow) to approximately 8/11 (laminar flow}. Due to
the approximate nature of the present analysis a value
of ¢ = 1 is justified for most applications.

In the energy equation {2) note that axial con-
duction, viscous dissipation, and a term involving the
adiabatic temperature gradient have been neglected.
The latter two effects are proportional to a parameter
known as the dissipation number [10], Di = f,9D/
2c,;. The two effects have been included for laminar
flows in the present geometry [11] and were found
to be of the same order and generally small for most
applications. In general, viscous dissipation and the
adiabatic temperature gradient may be neglected in
natural convection problems when the dissipation
number is small compared to unity.

The temperature in the solid surrounding the free
convection loop is governed by Laplace’s equation. An
appropriate solution for the temperature at any point
P can be obtained by the superposition of point
sources and point sinks of heat along the centerline of
the loop [12]. To satisfy the surface boundary con-
dition it is necessary to introduce a mirror-image
loop, embedded in a heat-conducting solid, above z
= (). The axial coordinate s is extended to the image
loop (over the range nD/2 < s < nD). The heat flow 10
the surrounding solid from the true or image loops, per
unit length along the loops, is denoted by @' or ¢,
respectively. Any heat released by the true loop must
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be absorbed by the image loop. The isothermal
boundary condition at z = 0 is satisfied by requiring
that Qi(nD — s) = —Q'(s)over therange 0 < s < nD/2
(discontinuities may exist at s =0 and =D/2). The
temperature at any point P in the surrounding solid is
thus given by

nD/2 Q’(S)dS
T(X, ya Z) - J‘() 47tksr

J ™ Qifs)ds

=pp2 Amkg

oT
(D) o

where T, is the surface temperature (at z =0),
(6T/0z2), denotes the uniform heat flux into the solid
from below, and the integrals of heat loss from the
actual and image loops appear on the right side.

The mean wall temperature T,(s) is found by
averaging the temperature given by (3) around the
circumference of the duct at any axial station. The
source-sink distribution is then eliminated from the
averaged equation by using the identity

Q'(s) = mh,d(T; — T,). )
The result is

T( f % - +To+<aT> 2 (5)
0z /o

where temperatures in the image loop are suitably
interpreted. Equation (5) is a weakly-singular, non-
homogeneous Fredholm integral equation of the
second kind.

The governing equation may be cast in parametric
form by introducing dimensionless variables. Approp-
riate reference quantities are, for a length scale, the
depth (or radius) of the loop, D/2, and, for a tempera-
ture scale, the temperature difference between the
bottom of the loop and the surface of the solid, AT
= (0T/0z), D/2. The governing equations (1), (2) and
(5) thus become

2

P
Jebcosd)dS—nfRe 'Z 6)
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o1 k[ — ds
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where S, R and Z are dimensionless lengths and ¢
=(T— T,)/AT The parameters which appear are
identified as Reynolds, Prandtl, Rayleigh and Nusselt
numbers

Re:u_d’ Pr=Yi,
Vs Oy
0T /0z),, d* hd
Ra = SBCT/od o hd
Vfaf kf

To complete the problem formulation, forced con-
vection correlations for the friction factor and Nusselt
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number are assumed. These are [12, 13]:
f=64/Re, Nu=48/11
for laminar flow (Re < 2300) and
f=0316Re™ %%, Nu=0023Re®3Pr'? (11)

for turbulent flow (Re > 3300). Linear interpolation is
used for the transitional regime (2300 < Re < 3300).
The Nusselt number given in (10) applies for constant-
flux wall heating; the Nusselt number given in (11)
applies for both constant-flux and constant-wall-
temperature heating conditions. The foregoing cor-
relations should provide reasonable estimates when-
ever secondary flows due to curvature or mixed con-
vection are small [12, 14]. Thus, although the mean
flow is driven by density differences between ascending
and descending legs of the loop, secondary flows (and
density differences) at any axial station are neglected.

The usual unknowns in the present problem are the
mean velocity, 4, and the bulk and wall temperature
distributions in the loop. In dimensionless form, these
unknowns appear in the Reynolds number, Re, and the
temperature distributions 8,(S) and 8,,(S). These un-
knowns are governed by equations (6) to (8), with f and
Nu given by (10) and (11). The governing equations
form a set of nonlinear (in Re), coupled, differential and
integral equations. In general, solutions must be
obtained numerically. One boundary condition ap-
pears in the governing equations: the inlet fluid
temperature 0,,. We will assume that fluid enters at the
surface temperature so that 6,; = 0. The independent
parameters of the problem thus become Pr, Ra, d/D,
and k/k,.

(10)

NUMERICAL SOLUTIONS

A principal goal of the study is to find the flow rate,
the outflow temperature, and the convective heat
transport from a syphon when all other parameters are
given. Since the governing equations are nonlinear in
Re, they are not readily solved for this variable.
Instead, solutions were found by assuming a value for
Re and then finding the value of Rarequired to balance
the flow.

A solution proceeds by assuming Re and solving (7)

and (8) for the temperature distributions, 6, and 7,
along the loop. Finite differences were used. A back-
ward difference was employed (for stability reasons)
for the spatial derivative in (7). The mean wall
temperature, 0,(s), was found by averaging, at each
axial station, the temperature given by (3) at four
equally-spaced points around the circumference of the
duct. Trapezoidal-rule integration was then used for
(8). Although a direct algebraic solution for 8, and 8,,
at discrete points is possible in principle, the number of
unknowns is generally too large to handle with
accuracy. Instead, in practice a two-step iteration was
found to be effective. First, 8, was found from (7) using
an estimate of §,. Second, the §, estimate was
improved by solving (8) using the new 6,-values. The
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two-step process was repeated until convergence was
achieved (typically within 10 iterations). In the second
step, for small values of the coefficient of the integral in
(8), successive substitution was successful for solving
(8). For large values of the coefficient, a direct algebraic
solution was required. In addition, for small values of
d/D, a local analytical integration of (8) was used to
accurately handle the logarithmic singularity. Spatial
step sizes of AS = 0.01 = and 0.025 n were used for the
successive substitution and direct procedures,
respectively.

After the temperature distributions were obtained,
the integral in (6) was evaluated using trapezoidal-rule
integration. The Ra-value required to balance the flow
was obtained from (6). Solutions were obtained in
this way for a range of Re. Additional details are
available in reference [11].

RESULTS

Numerical solutions have been carried out to obtain
flow rates and heat transfer characteristics for the free
convection loop, or thermosyphon, shown in Fig. 1.
Results are presented for a wide range of Rayleigh
numbers and d/D ratios. A Prandtl number of Pr = 2.8
is assumed (water at 65°C). This choice of Pr does not
influence the laminar flow solutions, however. A
thermal conductivity ratio for the fluid and surround-
ing solid of k,/k, = 0.133 is assumed. For water as the
fluid, this corresponds to a thermal conductivity for
the solid which is intermediate between metals and
nonmetals.

In what follows, it will be convenient to compare the
numerical solutions with an analytical solution from
reference [ 7]. The analytical solution assumes that the
solid surrounding the loop has a very high thermal
conductivity so that the ratio k /k; — 0. In this limi,
the integral in (8) may be neglected and the wall
temperature along the loop becomes a known function
of depth (or position), i.e. 8, = Z. The energy and
momentum equations, (7) and (6), may be integrated to
respectively obtain the bulk temperature distribution
along the loop

6, = T:—NTZT[C_SN + -Il—lsinS - cosS] (12)

and an equality between buoyant and friction heads,

/2 N N ReNu
— "Ny 1)y =2nf-——(13
TaN @t 3
where
:>17 ReP;:ﬁA (14)
2 Nu D

The analytical solution also reveals the existence of a
critical Rayleigh number for the onset of convection
through a free convection loop. The critical Rayleigh
number may be found from (13) by letting N — 0.
Denoting the critical Ra from the analytical solution
by Ra*, the result is Ra¥* = 4fReNu. Since laminar
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flows are expected at the onset of motion, fand Numay
be evaluated with (10) to obtain

Ra* = 12288/11 = 1117.1.

{15}

The critical Rayleigh number for the onset of
convection in the loop is completely analogous to a
critical Rayleigh number for the onset of motion in a
fluid layer heated from below [12]. For both the loop
and the layer, thermal and viscous damping suppress
fluid motion when Ra is less than the critical value.
When Ra is greater than the critical, buoyancy forces
accelerate the flow until a balance exists between
buoyancy and frictional forces. For the free convection
loop, the thermal and viscous damping are respectively
provided by wall heat transfer and by wall friction. The
wall heat transfer rate is, in turn, influenced by the
thermal conductivity of the solid surrounding the loop.

Numerically-determined critical Rayleigh numbers,
Ra,, are given in Fig. 2 for several d/D ratios and for the
assumed thermal conductivity ratio of k ;/k, = 0.133.
The ordinate is scaled by the critical Rayleigh number
for a loop embedded in a high-conductivity solid, RaF
(equation {15)). Clearly, the critical Rayleigh numbers
for the case k/k, = 0.133 arc less than Ra}. This is
readily understood if one examines the onset of
convection in terms of a departure from a quiescent
rest state. When the surrounding solid has a low
thermal conductivity, any slight motion of fluid
through the loop can alter the wall temperature along
the loop. Thus, the local wall temperature is increased
by ascending hot fluid, and is decreased by descending
cold fluid. Such changes alter the buoyancy forces in a
direction which helps to sustain fluid motion. The
resulting critical Rayleigh number is therefore less
than for a loop embedded in a high conductivity solid.
For that case the flow of fluid does not alter the wail
temperature to create a horizontal temperature differ-
ence to help sustain the flow.

Performance characteristics of the free convection
loop are illustrated in Figs. 3, 4 and 5. These figures
respectively display the flow rate. expressed as
Re Prd/D, the outlet temperature. 0,,, and the rate of
heat convection out of the loop. The abscissa in all
cases is the ratio Ra/Ra,. The dotted lines in Figs. 3 and
4 represent the analytical solution expressed by ({3}
and (12), respectively, and were evaluated assuming
laminar flow. The analytical solution corresponds to a
loop embedded in a high-conductivity solid, 1e¢.
k,/k,~ 0. Solid and dashed lines correspond ¢
numerically-obtained solutions for a conductivity ra-
tio of k/k, = 0.133. Results are shown for d/D = 1077,
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Fi6. 2. Critical Rayleigh number vs. d/D for k /k = 0.133
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F1G. 3. Variation of mean velocity, expressed by the group Re Pr d/D, with Rayleigh number. The dotted line
is from equation (13).

1072 and 10™*. Solid lines correspond to laminar
flows, and dashed lines to transitional and turbulent
flows.

Major features of the results will now be sum-
marized. For laminar flows, with f and Nu given by
(10), the governing equations (6) to (8) reveal that the
unknown Reynolds number appears only in the group
Re Prd/D. Figure 3 illustrates this group. From Fig. 3,
it is apparent for a given value of Ra/Ra, that laminar
flow rates are reduced by about 50 per cent when a
finite-conductivity solid (with k/k, = 0.133) is con-
sidered. Flow rates are further reduced by the tran-
sition to turbulence due to increased friction losses.

Outlet temperatures shown in Fig. 4 reveal a striking
similarity of the laminar results for k ,/k, = 0 and 0.133.
Maximum outlet temperatures of 0.528 and 0.472 are
observed for the two cases, and occur at Ra/Ra, values
of 3.5 and 4.3 respectively. Although the maximum
achievable outflow temperatures are similar, the actual
flow rates corresponding to the peaks are half as great
for the case k,/k, = 0.133. The appearance of a peak
outlet temperature at an intermediate value of Ra is
discussed further in reference [7]. At low flow rates 6,
equilibrates to the wall temperature and the outflow
temperature approaches the surface temperature, i.c.
6. — 0. For very high flow rates the fluid in the loop

06 T T T T T T |
0Sp— T Lominar ]
M~ —— 0.133 { Lominar =
| —~— 0,133 | Turbulent &
0.4 . T:;n:ifi?mnl ]
- \'\\ -
N =N
03 : T ]
: C. No._ d/p=16°
ebe : “~oo ]
021 d/D=16° e
l \\\ s |
a, Y N 4
o ld A, e d4/D=10 ]
N e A
i
0 I Lot va] ] Loy gagl ] ]
| 10 100 400
Ra/Ra,

FIG. 4. Variation of outlet bulk temperature with Rayleigh number. The dotted line represents equation (12)
evaluated at S = n.
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F16. 5. Ratio of the convective heat flow (Q,) to the ambient heat flow (Q, ) vs. Rayleigh number.

does not have time to be heated and in this limit 6, — 0.
Thus, a maximum outflow temperature occurs at an
intermediate flow rate. Note also in Fig. 4 that the
transition to turbulence can decrease or increase the
outlet temperature for the case k /k; = 0.133 depend-
ing upon whether Ra/Ra, is less than or greater than
4.3. This is a direct consequence of the aforementioned
change in the bulk temperature profiles with increas-
ing flow rate. When Ra/Ra, < 4.3 (low flow rates), §,
near the exit is generally greater than 6,. When
Ra/Ra, > 4.3 (high flow rates), the reverse is true just
below the surface. Since the transition to turbulence
tends to decrease the temperature difference 9, — 0,,,
the result is the observed decrease or increase of 0,,
accompanying the transition to turbulence.

An important aspect of the free convection loop is its
ability to enhance the transfer of heat from the interior
of the solid to its surface. This may be expressed by
comparing the enthalpy difference between outlet and
inlet of the loop

Q. = (nd*/4)p e, ji(Ty, — Tp) (16)

with the conductive heat flow at depth. Quite arbit-
rarily, we select a reference area of size D? for the
conductive heat flow

Q, = D*0T/¢z),. (17)
The ratio of these two expressions is
k d
& TN peprty, (18)
0, 8k D

and is displayed in Fig. 5. An ordinate value near unity
implies that the convective heat transfer by a loop is
comparable to the heat conduction through an area D?
at depth. Clearly, the ratio Q,/Q, increases as d/D is
increased. This implies, if d is held constant, that
shallow free convection loops are relatively more
effective for transporting heat to the surface than are

deep loops. Results in Fig. 5 also indicate that laminar
flows are somewhat more effective for transporting
heat than are turbulent flows; this follows from our
prior discussion of the effects of turbulent transition on
Re Prd/D and 6,, (Figs. 3 and 4). Thus, the rate of heat
transfer would be increased if the transition to turbul-
ence were delayed. From Fig. 5 we conclude that
shallow free convection loops, employing laminar
flow, provide the most effective means of enhancing the
transfer of heat from the interior of the solid to its
surface.
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TRANSFERT THERMIQUE ENTRE UNE BOUCLE A CONVECTION NATURELLE
ET UN SOLIDE CONDUCTEUR DE LA CHALEUR

Résumé—Une boucle ouverte 4 convection naturelle prés de la surface d’un silide conducteur de chaleur est
examinée numériquement, La boucle est en forme de demi-tore avec un tube de diamétre d et un rayon D/2 du
examinée numériquement. La boucle est en formetore. Le solide est chauffé uniformément par le bas. On
détermine les nombres de Rayleigh critiques (Ra,) pour Papparition du mouvement. Des vitesses, des
températures de sortie et des flux de transfert par convection sont déterminés pour des valeurs de d/D égales a
1072,107 % et 10~ * et pour des rapoorts (Ra/Ra,) qui varient de 1 4 360. Le nombre de Prandtlest égala 2,8 et
le rapport des conductivités thermique du fluide et du solide est k /k; = 0,133. Les résultats sont comparés
avec une solution analytique [7] pour un solide & trés haute conductivité, soit k/k, — 0.

WKRMETRANSPORI DURCH FREIE KONVEKTION IN EINER SCHLAUFE,
DIE IN EINEN WARMELEITENDEN FESTKORPER EINGEBETTET IST

Zusammenfassung—FEine nahe der Oberfliche cines wirmeleitenden Festkdpers eingebeticte offene
Schiaufe wird bei freier Konvektion numerisch untersucht. Die Schlaufe hat die Form eines Halb-Torus mit
dem Leitungsquerschnitt d und dem Torus-Hauptradius D/2. Der Festkorper wird gleichformig von unten
beheizt. Die kritische Rayleigh-Zahl Re, fiir das Einsetzen der Bewegung wird bestimmt. Geschwindigkeiten,
Austrittstemperaturen und konvektive Warmeiibergangswerte werden fiir Werte d/D von 1072, 1072 und
10™* und Verhéltnisse der Rayleigh-Zahlen (Ra/Ra,) von 1 bis 360 bestimmt. Die Prandtl-Zah! ist 2.8 und
das Verhdltnis der Wiirmeleitzahlen von Fluid und Festkorper ist k,/k, = 0.133. Die Ergebnisse werden
verglichen mit einer analytischen L&sung [7] fiir einen hoch-wirmeleitenden Festkérper, d. h. k f/ks —0.

TEIVIONEPEHOC CBOBOJHON KOHBEKIMEW B KOHTYPE, BCTPOEHHOM
B TENJIONPOBOJIHOE TBEPAOE TEJNO

Annoranus — [1posesieHo dHCIIEHHOE HCCNENIOBAKHE OTKPBITOTO KOHTYPA ¥ IOBEPXHOCTH TEMIONPOBOA-
HOTO TBEPAOYO T€1a, IPH 3TOM B KOHTYPe UMeeT MecTo ceobomHas xousexuus. KOHTYp H3roToBieH
B BUIE NOAYTOPa C AHAMETPOM KaHana d u Gosnpumm Topouaanbubiv papuycom Df2. Teepnoe teno
PaBHOMEPHO Harpesanocs cuusy. Onpeneneds! 3maweHus KpuTHueckoro uucna Penes (Ra.), cootset-
CTBYIOLIHE BOIHUKHOBEHHIO KOHBCKTHBHOTO TeueHms. CKODOCTh, TEMIEpATYPa Ha BHIXOOE, & TAKKE
CKODOCTE KOHBEKTHBHOTO NEPEHOCA TEIIA ONPENENANNCh NPH 3HaueHusx d/D, pasmmix 1072 1073
# 107% u npyu 3HAMCHMAX OTHOLICHHUN Ra/Ra, 8 nuanaszone o1 1 10 360. Yucno Hpannrns pasHsasoCh
2,8, a OTHOIIEHHE TEMIOTNPOBONKOCTH XHAKOCTH K TEMNONPOBOAHOCTH TBEPAOTO TEJA COCTABINIO
kylk, = 0,133, [IpoBeneHO cpaBHEHHE PEIYALTATOB C AHANHTHYECKHM pPCIIEHHEM LN CHYYAs BBCOKO-
TENNONPOBOAHOTC TBEPAOrO TEAa, T. €. koraa k fk, — 0.



